Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microbiol Spectr ; 11(3): e0084423, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2319398

ABSTRACT

The biological activity of polycations is usually associated with their biocidal properties. Their antibacterial features are well known, but in this work, observations on the antifungal properties of macromolecules obtained by methacrylamido propyl trimethyl ammonium chloride (MAPTAC) polymerization are presented. The results, not previously reported, make it possible to correlate antifungal properties directly with the structure of the macromolecule, in particular the molecular mass. The polymers described here have antifungal activity against some filamentous fungi. The strongest effect occurs for polymers with a mass of about 0.5 mDa which have confirmed activity against the multidrug-resistant species Scopulariopsis brevicaulis, Fusarium oxysporum, and Fusarium solani, as well as the dermatophytes Trichophyton mentagrophytes, Trichophyton rubrum, Trichophyton interdigitale, and Trichophyton tonsurans. In addition, this publication describes the effects of these macromolecular systems on serum and blood components and provides a preliminary assessment of toxicity on cell lines of skin-forming cells, i.e., fibroblasts and keratinocytes. Additionally, using a Franz diffusion chamber, a negligibly low transport of the active polymer through the skin was demonstrated, which is a desirable effect for externally applied antifungal drugs. IMPORTANCE Infectious diseases are a very big medical, social, and economic problem. Even before the COVID-19 pandemic, certain infections were among of the most common causes of death. The difficulties in the treatment of infectious diseases concern in particular fungal diseases, against which we have only a few classes of drugs represented by a few substances. The publication presents the preliminary results of the in vitro antifungal activity studies of four MAPTAC polymers on different fungal species and their cytotoxicity to human cells (fibroblasts and keratinocytes). The paper also compares these properties with analogous ones of two commonly used antifungal drugs, ciclopirox and terbinafine.


Subject(s)
Antifungal Agents , COVID-19 , Humans , Antifungal Agents/toxicity , Ammonium Chloride , Pandemics , Microbial Sensitivity Tests , Polymers/pharmacology
2.
Vaccine ; 40(13): 1996-2002, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1692819

ABSTRACT

ChAdOx1 nCoV-19 adenoviral vector vaccine (ChAd) against coronavirus disease 2019 has been associated with vaccine-induced thrombosis and thrombocytopenia (VITT), especially in young women who have presented with unusual localized thrombosis after receiving the vaccine. The pathogenesis of VITT remains incompletely understood. We tried to provide new insights into mechanisms underlying this phenomenon in the model of arterial thrombosis electrically induced in the carotid artery of female rats. At 28 days post-vaccination, ChAd induced SARS-CoV-2-specific neutralizing antibody responses in all animals. The analysis of the blood vessel/thrombus area showed slight luminal narrowing of the carotid artery with extravasation of blood in vaccinated rats. These small changes were not accompanied by differences in thrombus weight and composition. The vaccinated animals presented a slight increase (by around 14-24%) in platelet aggregation. ChAd did not significantly affect blood coagulation, platelet counts, and their activation markers. Unaffected thrombus formation, the lack of thrombocytopenia and all the measured blood and hemostasis parameters that predominantly stayed unchanged, indicate that the ChAd does not increase the risk of arterial thrombosis development in female rats.


Subject(s)
COVID-19 , Thrombosis , Vaccines , Animals , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Female , Humans , Platelet Aggregation , Rats , SARS-CoV-2 , Thrombosis/etiology , Thrombosis/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL